Modelling I SUMMER TERM 2020

$$
F(\omega)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \omega} d x
$$

Lecture 18

Signal Theory \& Sampling

Reminder:
Constructing Bases
Frequency Space Analysis

Which of the following two is better?

Obvious, but why?

- Long story...
- Sampling theory
- Fourier transforms involved
- We'll look at this l- Ker now.
- Also: why the "Sombrero"-style shape?

Radial Basis Functions

Regular grids

Irregular (w/scaling)

Signal Theory \& Sampling

Topics

Topics

- What is the problem?
- Fourier transform
- Theorems
- Analysis of regularly sampled signals
- Irregular sampling

Model Problem: Raytracing

Raytracing

- Sample 3D scenes with "view rays" through each pixel
Sampling Aliasing

Sampling Text

text

Reconstruction Aliasing

text

magnified pixels

Aliasing - the Short Story

Sampling Aliasing

- Sampling a signal inadequately
- Detail information shows up "under false name"
- Too-high-frequency details \rightarrow low-frequency moiré
- Need to understand sampling requirements

Reconstruction Aliasing

- Low-detail signal is reconstructed with unwarranted high-frequency details
- Need to understand reconstruction process

Rendering: Crucial for quality + efficiency

Underlying Question

Deeper question underlying this

- How much information is in a function?

Complex Numbers

Complex Numbers

Vector space \mathbb{R}^{2} :

- $z \in \mathbb{C} \rightarrow z=(x, y)=: x+i y$
- i is the upward basis vector $(0,1)$
- i introduces the y-axis
- Unlike \mathbb{R} : Unordered!

Additional multiplication

- Multiplying complex numbers $z_{1} \cdot z_{2}$:
- Multiply length
- Add angles
- This makes $i=\sqrt{-1}$

Complex exponential

Complex exponentials:

- Powers of imaginary numbers
= rotating vectors
- Euler's formula:

$$
e^{i x}=\cos x+i \sin x
$$

Real Fourier Series

Fourier Basis

Fourier basis (orthonormal)

$$
B=\left\{1, \sqrt{2} \sin 2 \pi k x, \sqrt{2} \cos 2 \pi k x \mid k \in \mathbb{N}^{\geq 1}\right\}
$$

Fourier series

- Periodic functions $f:[0,1] \rightarrow \mathbb{R}$
- Fourier series approximation:
$\tilde{f}(x)=b_{0}+\sqrt{2} \sum_{k=0}^{\infty}\left[a_{k} \sin 2 \pi k x+b_{k} \cos 2 \pi k x\right]$
- Coefficients?

Fourier Basis

Fourier series

- Fourier series:

$$
\tilde{f}(x)=b_{0}+\sqrt{2} \sum_{k=0}^{\infty}\left[a_{k} \sin 2 \pi k x+b_{k} \cos 2 \pi k x\right]
$$

- Coefficients?

$$
\begin{aligned}
& a_{k}=\langle f(x), \sqrt{2} \sin 2 \pi k x\rangle=\sqrt{2} \int_{0}^{1} f(x) \cdot \sin 2 \pi k x d x \\
& b_{k}=\langle f(x), \sqrt{2} \cos 2 \pi k x\rangle=\sqrt{2} \int_{0}^{1} f(x) \cdot \cos 2 \pi k x d x \\
& b_{0}=\langle f(x), 1\rangle=\int_{0}^{1} f(x) d x
\end{aligned}
$$

- Convergence?

Fourier Series

Fourier Series

- Converges for functions
- Finite variation
- Lipschitz-smooth
- Convergence means:

$$
\lim _{k \rightarrow \infty}\|f-\tilde{f}\|^{2}=\lim _{k \rightarrow \infty}\langle f-\tilde{f}, f-\tilde{f}\rangle=0
$$

Complex
 Fourier Series

Fourier Basis

Fourier basis (real):

$$
B_{\mathbb{R}}=\{1, \sqrt{2} \sin 2 \pi k x, \sqrt{2} \cos 2 \pi k x \mid k \in \mathbb{N}\}
$$

Fourier basis (complex):

$$
B_{\mathbb{C}}=\{\exp (2 \pi i k x) \mid k \in \mathbb{Z}\}
$$

Complex Series

Fourier series

- Fourier series:

$$
\tilde{f}(x)=\sum_{k=-\infty}^{\infty} z_{k} \exp (2 \pi i k x)
$$

- Coefficients?

$$
\begin{aligned}
z_{k} & =\langle f(x), \exp (-2 \pi i k x)\rangle \\
& =\int_{0}^{1} f(x) \cdot \exp (-2 \pi i k x) d x
\end{aligned}
$$

Tip: 3BLUE1BROWN - But what is a Fourier series? From heat flow to circle drawings https://www.youtube.com/watch?v=r6sGWTCMz2k

Scalar Product on Real Function Spaces

Real (finite-dim.) Vector Spaces

- For $\mathbb{z}, \mathbf{q} \in \mathbb{R}^{d}:\langle\mathbb{z}, \mathbf{q}\rangle:=\mathbb{z}^{T} \mathbf{q}$

Real Function Spaces

- For suitable*) functions

$$
f, g: \Omega \subset \mathbb{R} \rightarrow \mathbb{R}
$$

the standard scalar product is defined as:

$$
f \cdot g=\langle f, g\rangle:=\int_{\Omega} f(x) \cdot g(x) d x
$$

- Measures an norm and angle in an abstract sense

Complex Function Spaces

Hermetian Vector Space

- For $\mathrm{z}, \mathbf{q} \in \mathbb{C}^{d}:\langle\mathrm{z}, \mathbf{q}\rangle:=\mathrm{z}^{T} \overline{\mathbf{q}}$

$$
\begin{aligned}
& z=a+i b \\
& \bar{z}:=a-i b
\end{aligned}
$$

Hermetian Function Space

- For suitable functions

$$
f, g: \Omega \subset \mathbb{R} \rightarrow \mathbb{C}
$$

the standard scalar product is defined as:

$$
f \cdot g=\langle f, g\rangle:=\int_{\Omega} f(x) \cdot \overline{g(x)} d x
$$

- Measures an norm and angle in an abstract sense

Fourier Transform

Fourier Transform

Continuous transform:

- Continuous function set: $\left\{e^{-i 2 \pi \omega x} \mid \omega \in \mathbb{R}\right\}$
- Orthogonal on \mathbb{R}
- Projection via scalar products \Rightarrow Fourier transform
- Fourier transform: (f: $\mathbb{R} \rightarrow \mathbb{C}) \rightarrow(F: \mathbb{R} \rightarrow \mathbb{C})$

$$
F(\omega)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \omega} d x
$$

- Inverse Fourier transform: $(\mathrm{F}: \mathbb{R} \rightarrow \mathbb{C}) \rightarrow(\mathrm{f}: \mathbb{R} \rightarrow \mathbb{C})$

$$
f(x)=\int_{-\infty}^{\infty} F(\omega) e^{2 \pi i x \omega} d \omega
$$

Fourier Transform

Interpreting the result:

- Transforming a real function

$$
f(x): \mathbb{R} \rightarrow \mathbb{R}
$$

- Result: $\mathrm{F}(\omega): \mathbb{R} \rightarrow \mathbb{C}$
- ω are frequencies (real)
- Real input f : Symmetric result

$$
F(-\omega)=F(\omega)
$$

- Output are complex numbers
- Magnitude: "power spectrum" (frequency content)
- Phase: phase spectrum (encodes shifts)

Important Functions

Some important Fourier-transform pairs

- Box function:

$$
f(x)=\operatorname{box}(x) \rightarrow \quad F(\omega)=\frac{\sin \omega}{\omega}:=\operatorname{sinc}(\omega)
$$

- Gaussian:

$$
f(x)=e^{-a x^{2}} \quad \rightarrow \quad F(\omega)=\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi \omega)^{2}}{a}}
$$

Triangle Function

Bilinear Interpolation

$$
f(x)=\operatorname{triangle}(x) \rightarrow F(\omega)=\frac{\sin ^{2} \omega}{\omega^{2}}:=\operatorname{sinc}^{2}(\omega)
$$

Higher Dimensional FT

Multi-dimensional Fourier Basis:

- Functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$
- 2D Fourier basis:

$$
\begin{gathered}
f(x, y) \text { represented } \\
\text { as combination of } \\
\left\{e^{-i 2 \pi \omega_{x} x} \cdot e^{-i 2 \pi \omega_{y} y} \mid \omega_{x}, \omega_{y} \in \mathbb{R}\right\}
\end{gathered}
$$

- In general:
- All combinations of 1D functions
" „Tensor product basis"
- $b_{i, j}(x, y)=b_{i}(x) \cdot b_{j}(y)$

Tensor Product

Example
Gaussian Basis Functions

Convolution

Convolution:

- Weighted average of functions
- Definition:

$$
f(t) \otimes g(t)=\int_{-\infty}^{\infty} f(x) g(x-t) d x
$$

Example:

Theorems

Convolution theorem:

- Fourier Transform converts convolution into multiplication

$$
F T(f \otimes g)=F \cdot G
$$

Theorems

Convolution theorem:

- Fourier Transform converts convolution into multiplication

$$
F T(f \otimes g)=F \cdot G
$$

All other cases as well

- $F T^{-1}(F \cdot G)=f \otimes g$
- $\quad F T(f \cdot g)=F \otimes G$
- $F T^{-1}(F \otimes G)=f \cdot g$
- (Formally: Fourier basis diagonalizes shift-invariant linear operators)

Signal Theory

Sampling a Signal

Given:

- Signal $f: \mathbb{R} \rightarrow \mathbb{R}$
- Store digitally:
- Sample regularly ... $f(0.3), f(0.4), f(0.5) \ldots$
- Question: what information is lost?

Delta Function

Dirac Delta "Function"

- $\int_{\mathbb{R}} \delta(x) d x=1$, zero everywhere but at $x=0$
- Idealization ("distribution") - think of very sharp peak

Fourier Transform

Fourier Transform Pair

- Dirac delta function \leftrightarrow uniform spectrum...
- ...and vice versa.

Important Functions

Intuition: Gaussians

$$
f(x)=e^{-a x^{2}} \quad \rightarrow \quad F(\omega)=\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi \omega)^{2}}{a}}
$$

Dirac Comb (Impulse Train)

Impulse Train

$$
\mathrm{III}_{T}(x)=\sum_{k=-\infty}^{\infty} \delta(x-k \cdot T)
$$

Fourier Transform

$$
F T\left(\mathrm{III}_{T}\right)=\frac{1}{T} \mathrm{III}_{1 / T}
$$

Sampling

Sampling a function

- Multiplication with impulse train

$$
f_{\text {sampled }}(x)=f(x) \cdot \mathrm{III}_{T}(x)
$$

Sampling \& Reconstruction

spatial domain

(a) a continuous function and its frequency spectrum

(b) a regular sampling pattern (impulse train) and its frequency spectrum
spatial domain

frequency domain

(c) sampling: frequencies beyond the Nyquest limit $v_{s} / 2$ appear as aliasing

(d) reconstruction: filtering with a low-pass filter R to remove replicated spectra

Reference: Foley, van Dam, Feiner, Hughes
Computer Graphics - Principles \& Practice, 2nd Edition, Addisson-Wesley, 1996
Chapter 14.10 "Aliasing and Antialiasing"

Sampling a Signal
 spatial domain
 frequency domain

(a) a continuous function and its frequency spectrum

(b) a regular sampling pattern (impulse train) and its frequency spectrum

Sampling a Signal
 spatial domain
 frequency domain

(c) sampling: frequencies beyond the Nyquest limit $v_{s} / 2$ appear as aliasing

Reconstructing a Signal

(d) reconstruction: filtering with a low-pass filter R to remove replicated spectra

Regular Sampling

Results: Sampling

- Band-limited signals can be represented exactly
- Sampling with frequency v_{s} : Highest frequency in Fourier spectrum $\leq v_{s} / 2$
- Higher frequencies alias
- Aliasing artifacts (low-frequency patterns)
- Cannot be removed after sampling (loss of information)

band-limited

aliasing

Regular Sampling

Result: Reconstruction

- When reconstructing from discrete samples
- Use band-limited basis functions
- Highest frequency in Fourier spectrum $\leq v_{s} / 2$
- Otherwise: Reconstruction aliasing

Regular Sampling

Reconstruction Filters

- Optimal filter: sinc (no frequencies discarded)

QR

- However:
- Ringing artifacts in spatial domain
- Not useful for images (better for audio)

Ringing by sinc reconstruction from [Mitchell \& Netravali, Siggraph 1988]

- Compromise
- Gaussian filter (most frequently used)
- There exist better ones, such as Mitchell-Netravalli, Lancos, etc...

2D sinc

2D Gaussian

Irregular Sampling

Irregular Sampling

Irregular Sampling

- No comparable formal theory
- However: similar idea
- Band-limited by "sampling frequency"
- Sampling frequency = mean sample spacing
- Not as clearly defined as in regular grids
- May vary locally (adaptive sampling)
- Aliasing
- Random sampling creates noise as aliasing artifacts
- Evenly distributed sample concentrate noise in higher frequency bands in comparison to purely random sampling

When designing bases for function spaces

- Use band-limited functions
- Typical scenario:
- Regular grid with spacing σ
- Grid points \mathbf{g}_{i}
- Use functions: $\exp \left(-\frac{\left(\mathbf{x}-\mathbf{g}_{i}\right)^{2}}{\sigma^{2}}\right)$
- Irregular sampling:
- Same idea
- Use estimated sample spacing instead of grid width
- Set σ to average sample spacing to neighbors

Random Sampling

Random sampling

- Aliasing gets replaced by noise
- Can we optimize this? - Yes!

Different types of noise

- "White noise": All frequencies equally likely
- "Blue noise": Pronounced high-frequency content

Depends on sampling

- Random sampling is "white"
- Poisson-disc sampling (uniform spacing) is "blue"

Random Noise

pixel image (b/w)

discrete Fourier transform (power-spectrum)

Poisson Disc Sampling

discrete Fourier transform
(power-spectrum)

Regular Sampling

pixel image (b/w)

discrete Fourier transform (power-spectrum)

Jittered Grid (Uniform Displacem.)

pixel image (b/w)

discrete Fourier transform (power-spectrum)

Jittered Grid (same density)

pixel image (b/w)
discrete Fourier transform (power-spectrum)

Examples

pixel image (b/w)

discrete Fourier transform
 (power-spectrum)

Why should we care?

Exampe: Stochastic Raytracing

- Shoot random rays \rightarrow random noise
- Low-pass filter \rightarrow less noise
- Low-frequency noise persists
- LF-noise is particularly ugly!
- Need many samples

Recipe:

Sampling Signals

How to Sample

Given

- Function $f: \mathbb{R} \rightarrow \mathbb{R}$

Uniform sampling

- Sample spacing δ (given)

Choose filter kernel

- In case of doubt, try:

$$
\omega(\mathrm{x})=\exp \left(-\delta^{-1} x^{2}\right)
$$

- Sample $(f \otimes \omega(\mathrm{x}))$ regularly
- For example: Monte-Carlo integration

How to Sample

Given

- Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Multi-dimensional Gaussian

- In case of doubt, try:

$$
\omega(\mathrm{x})=\prod_{d=1}^{\mathrm{n}} \exp \left(-\frac{1}{\delta} x_{d}^{2}\right)
$$

- Same procedure otherwise...

How to Sample

Multi-dimensional Gaussian

$$
\omega(\mathrm{x})=\prod_{d=1}^{\mathrm{n}} \exp \left(-\frac{1}{\delta} x_{d}^{2}\right)
$$

How to Sample

Non-Uniform Sampling

- Choose sample spacing $\delta(\mathrm{x})$
- Match level of detail
- Nyquest limit
- Spacing between two "ups" = frequency
- Filter adaptively
- Varying filter width
- Sample adaptively
- Sampling width varies accordingly

Recipe:
Reconstructing Signals

Signal Rec

Uniform

- Given samples $y_{i}=f\left(x_{i}\right), i=1, \ldots, n$, spacing δ
- Chose reconstruction filter
- Try: ω (x$)=\exp \left(-\delta^{-2} x^{2}\right)$

Reconstruction: $\tilde{f}=\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)$

Non-Uniform

Non-Uniform

- Samples $y_{i}=f\left(x_{i}\right), i=1, \ldots, n$,
- Varying spacing δ_{i}
- If unknown: average spacing of k-nearest neighbors
- Chose reconstruction filter
- Try: $\omega_{i}(\mathrm{x})=\exp \left(-\delta_{i}^{-2}\left(x-x_{i}\right)^{2}\right)$

Reconstruction:

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega_{i}\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega_{i}\left(\mathrm{x}-x_{i}\right)}
$$

"Partition of Unity" just to be save...

Reconstruction: Implementation

Variant 1: Gathering

- Record samples in list (plus kD Tree, Octree, grid)
- For each pixel:
- Range query: kernel support radius
- Compute weighted sum (last slide)

Variant 2: Splatting

- Two pixel buffers: Color (3D), weight (1D)
- Iterate over samples:
- Add Gaussian splat to weight buffer
- Add $3 \times$ Gaussian splat scaled by RGB to color buffer
- In the end: Divide color buffer by weight buffer.

Gathering

$\leftarrow 1$ pixel \rightarrow

rays $x_{i}, f\left(x_{i}\right) \quad$ filter ω

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega\left(\mathrm{x}-x_{i}\right)}
$$

Splatting

color buffer

weight buffer

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega\left(\mathrm{x}-x_{i}\right)}
$$

Remark: Anisotropic Filtering

$$
\tilde{f}=\frac{\sum_{i=1}^{n} y_{i} \cdot \omega\left(\mathrm{x}-x_{i}\right)}{\sum_{i=1}^{n} \omega\left(\mathrm{x}-x_{i}\right)}
$$

Building Anisotropic Filters

$$
\mathbf{x}^{\mathrm{T}}\left[\mathbf{T}^{\mathrm{T}} \cdot \mathbf{T}\right] \mathrm{x}
$$

How to construct?

- Given: Kernel $w(\mathbf{x})$
- For example: $w(\mathbf{x})=\exp \left(-\frac{1}{2 \sigma} \mathbf{x}^{\mathrm{T}} \mathbf{x}\right)$
- Coordinate transformation:
- $w(\mathbf{x}) \rightarrow w(\mathbf{T x})$
- Gaussian: $w(\mathbf{x})=\exp \left(-\frac{1}{2 \sigma} \mathbf{x}^{\mathrm{T}}\left[\mathbf{T}^{\mathrm{T}} \cdot \mathbf{T}\right] \mathbf{x}\right)$

Advanced
Reconstruction

MOURE 10.101
(a) The test situation: a straight edge between black and white regions. (b) A failure of weighted-average reconstruction. Reprinted, by permission, from Mitchell in Computer Graphics (Proc. Siggraph '87), fig. 11, p. 72.

HOURE 10.103
Reconstruction with the Mitchell multistage filter. Reprinted, by permission, from Mitchell in Computer Graphics (Proc. Siggraph '87), fig. 14, p. 72.

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

Problem with partition-of unity:

Artifacts at boundaries of sampling

Remedy

Push-Pull-Algorithm

- Reconstruct at multiple levels (stratification)
- Build quadtree
- Keep one sample per cell
- Creates different levels
- Add results together
- Do not reconstruct in empty cells

Reduced bias

Advanced Reconstruction Moving Least-Squares

Moving Least Squares

Moving least squares (MLS):

- MLS is a standard technique for scattered data interpolation.
- Generalization of partition-of-unity method

Weighted Least-Squares

Least Squares Approximation:

Least-Squares

Least Squares Approximation:

$$
\tilde{y}(x)=\sum_{i=1}^{n} \lambda_{i} B_{i}(x)
$$

Best Fit (weighted):

Least-Squares

Normal Equations: $\left(\mathbf{B}^{T} \mathbf{W}^{2} \mathbf{B}\right) \boldsymbol{\lambda}=\left(\mathbf{B}^{T} \mathbf{W}^{2}\right) \mathbf{y}$
Solution: $\quad \boldsymbol{\lambda}=\left(\mathbf{B}^{T} \mathbf{W}^{2} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{W}^{2} \mathbf{y}$
Evaluation: $\tilde{y}(x)=\langle\mathbf{b}(x), \boldsymbol{\lambda}\rangle=\mathbf{b}(x)^{\mathrm{T}}\left(\mathbf{B}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{B}\right)^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{W}^{2} \mathbf{y}$
MLS approximation

$$
\begin{gathered}
\mathbf{b}:=\left[B_{1}, \ldots, B_{n}\right] \\
\mathbf{B}:=\left[\begin{array}{c}
-\mathbf{b}\left(x_{1}\right)- \\
\vdots \\
-\mathbf{b}\left(x_{n}\right)-
\end{array}\right] \quad \mathbf{y}:=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{W}:=\left[\begin{array}{c}
\omega\left(x_{1}\right) \\
\ddots \\
\omega\left(x_{n}\right)
\end{array}\right]
\end{gathered}
$$

Moving Least-Squares

Moving Least Squares Approximation:

target values

move basis and weighting function, recompute approximation $\tilde{y}(x)$
Moving Least-Squares

Moving Least Squares Approximation:

Summary: MLS

Standard MLS approximation:

- Choose set of basis functions
- Typically monomials of degree 0,1,2
- Choose weighting function
- Typical choices: Gaussian, Wendland function, B-Splines
- Solution will have the same continuity as the weighting function.
- Solve a weighted least squares problem at each point:

$$
\begin{aligned}
& \tilde{y}(x)=\mathbf{b}(x)^{\mathrm{T}}\left(\mathbf{B}(x)^{\mathrm{T}} \mathbf{W}(x)^{2} \mathbf{B}(x)\right)^{-1} \mathbf{B}(x)^{\mathrm{T}} \mathbf{W}(x)^{2} \mathbf{y} \\
& \text { moment matrix }
\end{aligned}
$$

" Need to invert the "moment matrix" at each evaluation.

- Use SVD if sampling requirements are not guaranteed.

Remark

 Uncertainty Relation(s)
Fourier Transform Pairs

Gaussians

$f(x)=e^{-a x^{2}} \quad \rightarrow \quad F(\omega)=\sqrt{\frac{\pi}{a}} \cdot e^{-\frac{(\pi \omega)^{2}}{a}}$

Taylor-Approximation

Function f

tangent slope

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \\
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{gathered}
$$

Think of this:

$$
\begin{gathered}
f=\left(y_{1}, \ldots, y_{n}\right) \\
f^{\prime}\left(x_{i}\right) \approx \frac{y_{i}-y_{i-1}}{h}
\end{gathered}
$$

